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1 Abstract

In this paper we highlight four problem domains that are well suited and challenging for

intelligent system technoloNes. The problems are defined and an outline of a probable

approach is presented. No attempt is made to define the problems as test cases. In other

words, no data or set of equations that a user can code and get results are provided. The

main idea behind this paper is to motivate intelligent system researchers to examine

problems that will elew_te intelligent system technologies and applications to a higher
level.

2 Introduction

Intelligent System (IS) applications have gained popularity among aerospace

professionals in the last decade due to the ease with which several of the IS tools can be

implemented. The applications have gained popularity among both the technical and user

communities for both intellectual curiosity and for practical reasons. Some of the novel

ideas using IS include _pacecraft autonomy, aircraft control, modeling, airfoil design,

satellite operations, ntis:die design, vehicle health managemefit, and so on. In the next

several sections, we present some problem domains that are challenging to achieve using

intelligent system technologies. If successful, the ensuing IS approaches can

revolutionize many aspects of aerospace applications. In each of the problem domains

discussed, we first present the potential problem area and outline one IS configuration

that could help achieve success. The problem domains covered include:

• Automated design

• Intelligent maneuvering

• Smart agent society

......... _--Real=time-optimi:.,:ation ..................

3 Automated Design

3.1 The Problem

Aerospace systems of tomorrow will be complex and their design interdisciplinary. For

example, design optimization conducted individually on subsystems such as wing,

propulsion, and automatic control will not integrate without extensive and costly

redesign. A unified de,qgn that integrates all facets of a system is difficult if not

impossible to find using current optimization techniques. Traditional design approaches

rely on cut-and-try approaches adopted by designers that can be conducted very well

using high performance computers. The bottleneck for computer implementation is the



lack of (1) a universalrepresentationof the designfeaturesand(2) a procedurefor the
designfeaturesto be cut-and-triedby a computer in an optimal way. There are other

potential problems associated with computer-based automated design. These are:

• Time required for a system simulation is large prohibiting use of full fidelity

simulation of the problem.

• Analytical derivatives of the objectives of design are frequently unavailable and

numerical gradients are expensive to compute.

° Design space consists of both continuous and/or discrete parameters

• Design response surface is non-linear, discontinuous, or undefined in some

regions. Several local extrema is common in many applications.

• Initial guesses for the design are costly and might lead to inaccessible solution

spaces.

The desire here is to u_e intelligent system technologies in an unified way to arrive a

design framework by which automated design can be achieved using computers.

3.2 A Solution

The idea of letting the computer do the cut-and-try is not new to the world of

optimization. A genetic optimization search basically involves a cut-and-try approach

that is driven by the survival-of-the-fittest concept. If universal representations

(standardized represent,_tion) can be developed, then a technique Iike genetic algorithms

could be used. The other challenge is the speed at which designs could be evaluated. This

implies that modeling techniques such as neural networks, fuzzy systems and so on can

play an important role here.

To obtain a universal representation, we introduce the concept of a design

building block. A design building block is a way to represent a feature as an input-output

function with tunable parameters. These functions can be polynomials, pieces of a neural

network, look-up tables, etc. These building blocks are identified first and a library of

these building blocks is constructed. This library is continuously updated as more and

more designs are created. This library is then used to construct design solutions for

existing problems using variants of a genetic algorithm or other combinatorial

optimization problem

We see several critical benefits of this approach to the design community. These are:

1. Library of Design building blocks: Library techniques are commonly used in

modem integrated circuit (IC) design packages. This greatly reduces the nu-mbel: .....

of combinations with which the designer must deal, thereby speeding up the

search process. _he design building blocks concept tailors this idea to the specific

design.

2. Innovation is achieved by the use of evolutionary search with stochastic operators.

This greatly reduces the chance of reaching a local solution and solves many of

the problems associated with gradient search techniques.

3. Long-term memory can be provided to the design package to remember good

design solutions for later use via the use of the micro-features of the immune

system, a variant of a genetic search process [1-3].

In summary, one needs tne following to achieve automated design:
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In summary, one needs the following to achieve automated design:

• an universal representation scheme for representing the building blocks of the design

• an appropriate genetic coding to accommodate the building block concept

• a class of performance criteria and utility functions

Figure 1 presents the overall architecture of the system proposed.

Search

Long-term

Memory
Design Solutions
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Figure 1. A Concept Diagram for Immunized Design Optimization.

Simple Design Solutions: Many engineering problems have simplified models and

solutions that are routinely used as a first guess approximation of the complete solution.

These solutions could be a rule-of-thumb solution or mathematically optimized using

simpler models_These s :>lutions are then converted to design building blocks -re b_used

in the evolutionary search. Examples include:

• Linearized models and linear solutions for non-linear control problems.

• Knowledge base of operator rules, etc.

Existing Design Solutioas: Many designs are in a way an improvement over existing

designs. Although this is not true across the whole spectrum, at least the new designs use

subsets of the old systera components. These existing designs can then be converted to

design building blocks and used in the search. Examples include:

• Available airfoil _,;hapes for aerodynamic shape optimization

• Available nozzle shapes for Nozzle design.



Component Design Solutions: When sub-components interact, the design solutions are

easier if they are considered as non-interacting. These desig-n solutions will not be the

optimal solutions when interactions are considered but provide a means of arriving at

certain fundamental building blocks. Examples include:

• In simultaneous actuator-sensor placement and control system optimization

problem, one can design the placement separate from control system design.

• Another examp]e is in aerodynamic-propulsion interaction in all-attitude control

problems with t_arust vectoring. Once again, the aerodynamic control system can

be designed independent of the propulsion control system and converted to design

building blocks.

Library of Design Building Blocks: Design building blocks are defined as segments of a

design solution that contribute in establishing a good fit to the requirements of the design.

Design Building blocks can be of different order. The order of a building block specifies

the number of specific modules (or parts or some pre-defined configurations) in a

building block. Determining important building blocks is problem dependent and both a

priori knowledge and the ability to identify through genetic search will be useful here.

Once the building blocks are identified, certain preprocessing and statistical analysis can
be carried out to enable a faster search.

Next, we present two e_ amples of design building blocks we have defined in our earlier

studies [1-3].

Neural Network Building Blocks: Examples of building blocks using neural

connections are shown below. The building blocks are specified using a

representation scheme that uses a neuron as the basic processing element. Thus

the Order 1 buihting block consists of two neurons and the relationship between

them. In the case of Neural Networks, the relationship is the connection strength

and the neurons _Lrecharacterized by their type (input, hidden, output), the type of

aggregation, and activation functions.

NEURAL NETW ORK

IN P U 1- t HIDDEN [
UNIT ! UNITS UNITII i

ANN Building Blocks

ORDER 2

RDER 1 @_@

Aerodynamic shape optimization Building Blocks: For airfoil optimization,

satisfactory results have been obtained using an array of Bezier curves for the



definition of theparameterizedshapes.A Bezierpolynomial of ordern is defined

by

i---'O

where

( n' t_(1-t)_-Iq);(t) = i!(n-i 21)!

P,'s ar the vertices of the Bezier control polygon. Given the above

parameterization, the design building blocks can be represented by P, or a family

of P_'s. Similar lo neural network building blocks, Order i building block will be

just one P,., Order 2 will be two P, 's and so on.

Utility Functions, etc. To evaluate the designs produced by the genetic search, a series of

performance measures and constraints have to be defined. Due to the ability of

evolutionary algorithms to search through non-continuous spaces, both traditional and

nontraditional measures could be easily combined.

4 Intelligent Maneuvering

Over the past several years, various adaptive control techniques have been developed

which are capable of accommodating a wide range of damage or failure conditions [4-6].

These approaches apply techniques, such as neural networks, fuzzy logic, and parameter

identification, to improve aircraft stability and control under varying conditions. While

these approaches address the continuous-time aspects of "how to control" an aircraft,

they do not address the discrete-time strategic and tactical decision-making aspects of

"how to fly" an aircraft. The outer-loop control and flight planning portions of flight are

normally left to conve;ational autopilots and waypoint-following flight management

systems.

4.1 The Problem

Current levels of automation allow pilots to assign direct tasks to automatic systems, such

as autopilots and flight management systems. These automated systems have been used

in commercial aircraft for a number of years. While their design can incorporate many

....... aspects-of-a-pilot's experience,- they do-not-possessahe reasoning or learning_abilities of a ........

pilot. As a result, pilot:; are still responsible for supervising the performance of these

systems as well as providing direction in the event of required changes. By applying

intelligent methods of automation, pilots, ground-based operators, or autonomous

executives can defer the responsibilities from performing and supervising tasks, to focus

on managing goals and objectives.

4.2 A Solution

In order to make reliable decisions when flying aircraft under varying conditions,

intelligent technologies _.-nust be applied which are capable of responding to changing

goals and objectives, wNle taking correction actions in the presence of internal and

external events. Multiple: methods, such as heuristics, artificial intelligence concepts, and



other soft computing _:echniques,can be applied in order to replace the experience,
reasoningandlearningabilities of pilots. Justaspilots usedifferentmentalapproaches
whenperformingvarioustasks,differentintelligentautomationtechniquescanbeapplied
whichcorrespondto thecomputationalnatureandtimerestrictionsassociatedwith those
tasks. Onemethodof organizingvarious intelligent techniquesis to establisha tiered
architecture,with separatedeliberativeandreactivedecision-makinglayers.

System Architecture: In terms of achieving a flight-path goal, a pilot's behavior can be

captured through a layered model consisting of discrete-time strategic planning and

tactical maneuvering, and continuous-time manual control (Figure 2) [7]. The discrete

nature of strategic and tactical behaviors allows for automated decision-making

techniques to be applied. Furthermore since strategic planning decisions are less time-

critical, more computationally intensive approaches can be utilized. All of the real-time

processing elements can be isolated in the automation of manual control.

Goal Pilot

J1 Discrete

Strategic Plannin

-_(__'_ _1 Maneuvering.G°al:aircraft position

-- Goal: aircraft attitude

_...__ Continuous

--t Vehicle

Ada#tOd from Ted Cheo & Amy _ritchott

Geo_ia Instilvte c_"Tec._nokx3y

Figure 2. Pilot Behavior Hierarchy

................. Figure-3 shows- -the resulting -conceptual i.ntegrated architecturm_Strategic _technologies .....

would perform longer-term flight planning, in order to meet dynamic mission goals and

objectives, while avoidiag obstacles and staying within performance boundaries. Tactical

technologies would pe:-form time-critical flight path operations, including aggressive

maneuvers in the presence of unexpected obstacles. Conventional and adaptive control

techniques would be used to automate the manual control task of the pilot, through the

automated selection of Ilight modes and targets.

Strategic Planning: From a piIot's point of view, any flight can be thought of as a plan of

turns, descents, and other discrete actions. These actions alter the continuous flight-path

or aircraft trajectory, ur_til desired goals are reached. Actions are not limited to merely

changes in the aircnfft speed and orientation. Some actions also change the aircraft



configurationitself, suchasextensionof flapsand gearsor thedumping of excessfuel.
Varioustrajectory specialistscould be usedto producecandidateflight path segments,
representingthe "experience"of a pilot. The selectioncriteria would be basedon
missiongoalsandconstraintsprovidedby a pilot, ground-basedoperator,or autonomous
executive.

Autopilot Flight Vehicle

Controller

Maneuver

Database

ADC - Air Data Computer

IRS - Inertia/Reference System

NAV - Navigational System
(GPS & Visual Perception)

..... _[ Sensors k

__ Conbnuous-Time

Commands & Signals

Discrete-Time
Commands

Figure 3. A Concept Diagram for an Integrated Architecture

Tactical Maneuvering: At the highest level, the pilot compares the commanded flight-

path with that of the current aircraft and selects the maneuvers capable of achieving that

command. Pilots use their knowledge of aircraft capabilities and of near-optimal

maneuvering strategies in order to select the necessary actions. Various methods could

be used to select the necessary maneuvers. A maneuver database, also representing the

"experience" of a pilot, could be used to provide pre-canned, or automatically generated,

maneuvering elements and established sequences. Vehicle models can be used to provide

the necessary predictive information for decision-making, representing the equivalent of

a pilot's "understanding" of the internal performance of the aircraft. Appropriate flight

modes and targets would be sent to the autopilot system, when necessary to initiate the
desired actions.

Automatic Controls: Conventional control techniques can be used to automate the

continuous-time control task of the pilot. However, various adaptive control techniques

can_also be_used to provide_the'_learning2_ability_ofa pilot. _Thesetechniques have the

potential of improving handing qualities, and thereby increasing the accuracy of

simplified closed-loop models used for decision-making.

5 Society of Prediction Agents

Prediction or forecasting is concerned with using the knowledge of present and past
events to make calculated estimates of future events. Prediction is an universal

phenomenon used in low level cognitive tasks such as vision, and perception, and high

level cognitive tasks suc!l as planning and making inferences. The inherent subjectivity,

randomness, domain dependencies, and uncertainties makes the prediction problem

extremely difficult and challenging to the scientist and the engineer. Moreover, often

there are multiple source,,; of prediction with varying degrees of reliability and confidence



[8,10,11,12,14].There are two distinct prediction techniques,namely qualitative and
quantitative. Qualitativetechniquesarereferredto asjudgmental,technological,or non-
statisticaland usually dependon expertopinion. Examplesof such techniquesinclude
decision matrices, S-carves,game theory, systemsanalysis,Delphi method (jury of

executive opinion method), and more recent fuzzy decision support expert systems [8].

Quantitative prediction techniques are based on the assumption of historical continuity.

Options include time series, regression, and combinations of the two.

5.1 The Problem

In aeronautics applications prediction techniques vary from a simple need to predict an

aerodynamic derivative to more complex situation such as fault predictions. In space

applications, prediction applications are more complex. Since the information sources can

be very varied, it is not sufficient to provide just human-like characteristics atop the

prediction technologies, we need to a go a step further and provide the capability of a

group of experts to arrive at a prediction. This task is quite challenging.

5.2 A Solution

More recent work related to a group prediction includes the Fuzzy Multiple Criteria

Group Decision Making (FMCGDM) based prediction proposed by Satyadas [7] that

introduces the notion of a group of expert agents selecting the appropriate prediction

from a pool of predictions. This is a hybrid model with a collaboration framework at the

highest level and various multi-sources of prediction at lower levels.

The FMCGDM equations can be defined as follows: Given n fuzzy rules

R= [rl, r2 ........ , r.], where

rn= IF xnl AND/OR x,_2 _YD/OR xnj THEN Y.1 AND Yn2.--Ynk-, each consisting of

j inputs/states/antecedents/premises X=[xl, x2,.., xj],

k outputs/actions/consequents/conclusions Y=[Yl,Y2, ...- Yk],

an universe of discourse resolution ofp steps; the state vector

S = [s l, sz,...s,_L where

Sn = Xnl AND/OR xn2 AND/OR...xnj and the fuzzy action curve set

A=[abaz,....an], where

an = [z_l, zn2, ...Z.p]

is obtained by applyirg fuzzy implication on S over the universe of discourse.

Appropriate fuzzy agg_n-egation (example: Max) and defuzzification (example: Center of

Area) algorithms can be applied on A to obtain a crisp output. The fuzzy membership

function parameters and the rule structure can be learned using evolutionary algorithms.



A weight matrix W[j+k,i] may be used to capture the weightage provided by i members

of the group on the j+k criteria, a weight matrix X[n,i] may be used to identify the

importance of each rule. Techniques such as logarithmic regression or Saaty's AHP may

be employed to appl_¢ the weights on to the fuzzy rules.

Given u sources of prediction, the above-described fuzzy system will provide a measure

of importance for each of the prediction as its output. Appropriate ranking and selection

techniques have to be used to compute the final prediction. The following technology
issues need to be addressed:

1. Given that there are achievable multi dimensional levels of Smart Prediction Agents,

what are the best set of building blocks that will enable easy implementation of these
Predictors.

2. Once these building blocks are defined and developed, develop a set of intelligent

prediction algorithms that inte_ate these building blocks. These shall be uniquely

indexed using the Smart Prediction Agent (SPA) rating given in Table 1. The

relevance and value of the algorithms are context dependent.

3. The implementation challenge will be to ensure component-based architecture and

standards that wilJ ailow interoperability and meets non-functional requirements such

as scalability, security, reliability, and the like.

The multi dimensional levels of smart prediction presented in [8] (See Table 1 below)

provides a means for qualifying and quantifying smart prediction techniques. We believe

that a practical way to define the predictive capabilities of a system is to approach it as

having multi dimensional levels of capabilities for self-improvement, problem solving,

knowledge and domain bounds, and trade-offs. The capabilities are additive towards

higher levels.

Any smart prediction agent may be identified as SPA[p,i,k,s,r] where p-problem solving,

/-self-improvement, k=knowledge building, s=severity/domain bounds, and r=risk

management/trade-off. "/his enables a SPA rating for various prediction systems based on

the values of p, i, k, s, and r.

Table 1. Levels of Dimensions for Smart Prediction

Lcv

el

.......... --1

1

2

3

4

5

Problem

Solving
-Uni=vari-ate----

Multi-Variate

Patterns/Cases

Stationarity
Multi-source

Causality

Self-

Improvement
Statistie_l--

Generalized

Adaptive

Optimized
Phm

I

I KnowledgeBuilding

-A-privori--
Derived

Inferred

Discovered

Severity

Crisp-compute-

Imprecise

Incomplete

Subjective

Complex
Chaotic

Risk Management/
Trade Offs

-Accuracy/T-rend--
Local/distributed

Temporal

Spatial

Static/D_mamic
Maximum/Avg ..

Problem Solving Dimension for Smart Prediction

Six levels have been identified in this dimension (Table 1). The uni-variate and multi-

variate refers to the dependent variables. Patterns/cases with the associated behavior

present a higher difficuky level for problem solving. Stationarity and ergodicity issues

present the next level of challenge. A stationary process will have time-invariant mean
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and variance. The covariance between values of the process at two time points will

depend only on the d stance between these time points and not on time itself. The

ergodicity assumption requires that values of the process sufficiently far apart in time are

almost un-correlated sc that averaging a time series through time continually adds new

and useful information to the average. This is followed by multiple sources of prediction

that includes the system approach.

Self-Improvement Dimension for Smart Prediction

The levels identified have been motivated by the levels of intelligent control [9]. Level 0

relies on statistical information to improve the quality of prediction. The next level

requires generalization ,capabilities that can be achieved using computational intelligence

techniques such as artificial neural networks. This is followed by adaptive learning

capabilities. Optimality of prediction, with the goal of minimization or maximization of

a utility function over tree, is addressed by Level 3. Coupling to a control module, that

may require modified predictions, is introduced in the next level. Level 4 presents the

planning aspects of self-improvement that provides the ability to perform predictions

based on a plan with the associated goals and risk mitigation strategies.

Knowledge Building Dimension for Smart Prediction

Level 0 relies on a priori knowledge. Various techniques, from ad-hoc to well defined

and complex, from artificial intelligence have been proposed by researchers. Techniques

include memory modules (neural and otherwise) with fixed weights, fixed fuzzy rules

and parameters, and suitable parameters for GA. The generic coding structure of GA is an

attractive feature. Simpie derivations based on observed facts are provided in Level 1.

The next level has inference capabilities. Level 3 provide knowledge discovery

capabilities that demand advanced data and text mining features. Learning plays a critical
role here.

Severity Dimensions for Smart Prediction

The severity dimension provides a measure of the domain bounds. The levels start from

crisp computation, imFrecise and/or incomplete domains, and subjectivity. Level 4

represents a complex domain that is in the edge of chaos, and level 5 - a chaotic domain.

Risk Management Dimeasion for Smart Prediction

This dimension address trade-off that promotes risk management. Level 0 trade-off is

between accurate prediclion and just being able to predict the trend (whether it is upward

or downward). The local/distributed aspect of the problem/solution space is introduced in

Level I. This is followed by temporal and spatial trade-off. Level 4 mitigates the risks

between static and dynamic prediction. Choices between optimizing predicted values and

just obtaining an average prediction is provided in Level 5.

6 Real-time optimization under uncertainty

6.1 The Problem

Building large-scale intelligent solutions for optimal decision-making and control is of

great importance to the advancement of operational autonomous systems. Werbos[15]
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has addressed an impoJzant formulation for achieving higher-order intelligence in these

systems. The outlined approach extends the capabilities of adaptive critics 1 [16-18] to

include temporal cht::nking. Although many researchers believe that real-time

optimization over time and under uncertainty is a good approach to replicating higher

order intelligence, the current applications of intelligent systems do not reflect the type of

complexity processed by the mammalian brain.

6.2 The Solution

The central theme of the proposed solution is to arrive at a modular architecture for

achieving higher order intelligent decision-making and control. To achieve this, we first

define a MAC (Model-Action-Critic) neuron and extend it to represent a network of these

with associated training signals. For effective autonomous decision making, we need

adaptive control driven by an adaptive critic. In Figure 4, we present a single MAC

(Model-Action-Critic) r_euron in which the interactions within three sub modules and

with the external world (fat solid arrows) and other MACs (fat hollow arrows) are shown.

These inputs are available to all the three modules (M, A, and C). The dashed-lines and

the solid lines betweer_ the three sub modules denote information being passed for

different time periods to keep in mind the temporal nature of the training.

Observed
Vector

Input from Output to
other MACs other MACs

Action/Decision
Vector

Fi_Jre 4.ModeLAction-Critic module renresented as one comnutational entity

1 An adaptive critic adapts itself and at the same time it outputs a performance measure

that can be used to update a controller network and/or a decision network. Howard's

formulation of dynamic programming [19] is the inspiration behind the simplest version ............

of adaptive critics, namely, Heuristic Dynamic Programming (HDP) critics. HDP is

based on an attempt to approximate Howard's form of the Bellman equation:

f
J(x t ) = Max{UpM (x,) + gJ(x, ).l)1 xt+l = f(xt' u,, noise)

ut (

where x t is the state vector, u, is the control vector, Uea..l(.) is the one stage

Performance Measure function, f( ..... ) is the model of the system, and y(0 < y < 1)is the

discount factor.
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Once we identify MAC as one computational entity, network of these critics can

be built by specifying either the partitioning before hand (an example is given later) or

defining the desired hierarchy (number of MAC neurons, number of layers, etc.). Once

these decisions have been taken, the MAC neurons can be assembled as a network of

critics.

Temporal Chunking for Brain-like Intelligence

Given a policy zr (control or decision strategy) and a probability transition matrix P, one

can write the Howard's formulation of the recursive equation as:

(2) j_,_ =U,_ + ((___p,,)r /(1+ r))(L,_)

Now if substitute iv/_ = (=_p,_)r/(1 + r), we have

(3) J'_ =U _ +(M r_J:_)

The above equation represents a fixed policy with just value updates. In a policy update,

the control u (or decisicn d) is chosen to optimize (maximize or minimize) the right hand

side of the equation.

In equation 3, if the malcix M n is sparse (which is usually the case), one can partition the

state space into smaller blocks within which the transition probabilities are non-zero and

transition from one bl,Jck to the other happens only for exit and entry states. This

partition could be defined a priori or learnt on-line (which is a much more difficult task).

In some problems, as shown later, such partitions are well understood.

Now let us say we have two partitioned blocks A and B, with A representing the current

block in which the system is operating and B representing a block to which the system

could transition to. Starting from Block A, we have two transition probability matrices,

/¢ representing transition probability within block A and paB the probability of transition

into block B. Similar to M defined earlier, one can define M A and M A8 matrices and

derive an equation simil_tr to equation 3,

In the above equation, the notation v jA represents a portion of the variable vector v_

applies to states within Mock A.

that

If we now extend the pa-tition B to include more blocks, we have

B_n(A)

where B_ n(A) represents the blocks in B that can be transitioned into by states in block

No
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As shown by Werbos[ 15], the above equation can be written as,

(7) J__._ A = J A-{ "- £ ,IlAB(j_ B)

B_n(A)

with JA=(I-MA)-I(U_ I ) and JAB=(I-MA)-IMAB

Now one can write the fl_llowing recursive relations similar to Bellman's

(8) ja =U__ I +M_jA and jAB =MAB +MAjAB

Using equations 8a and ,% in conjunction with a learning algorithm, jA and j_.Ae can be

updated and thus J can be calculated using equation 7. Finally, control (or decision) can

be updated based on J_J.

A simple example: We will define a simple example to illustrate the use of the idea

presented. Let a system _onsist of two states and one control as shown below.

"_ = fA (Xl' X2' U) for ,1"21 !; X 2 _ X22

JC = fB (Xl' X2" U) for x22 :_ X 2 _ X23

g l =i,,,q >1where x= xl , f A , f B = i '
[.x2 .] [_f_2 J [.fB.

and u is the control.

Note that the system has a clear partition based on the state x2. Based on this pre-defined

partition, one can design MACa partition (xz, <_xz _<xz,) and MACB partition

( x= _<x 2 _<x23 ) and can be implemented as shown to the right.

Learning the underlying hierarchy: In many problems, the underlying partitions are

............ known-or-ean-b_concep tualized_ For -true-brain-like -intelligence_-it-will- be-desirable-to ..........

learn such partitions. This could be achieved either off-line or on-line. Definitely on-line

implementation will be very difficult to achieve. Off-line synthesis could be achieved in

several ways. One simple: way is to use parsimonious networks with pruning capabilities

to learn the internal partitions. Another approach could be clustering via unsupervised

learning.

Decisions and failure accommodation

As suggested by Werbos and others, the partitions can be navigated more efficiently by

including a decision layer in the network of critics. This concept is illustrated below.

Also, failure accommodalion could be handled inside of the decision layer. In the figure
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shown,we assumethat thenetworkbehaveslike awinner-all typewith lateralinhibition
implying thatonly onec,f theneuronsoutputthecontrolvector.

Observed
Vector _" _ _'_. / i } } _N_ Action/Decision

: _ "Y_ _-_'_ _/ _ Vector

Figure .5. Network of Critics with a Decision Maker Layer

(MDC - Model-Decision-Critic)

7 Conclusions

In this paper, we presented four problem domains that are well suited for further

advances in intelligent systems. These domains include, designa, autonomous

maneuvering, predictiol, and decision-making. All of these require advances in

intelligent system technologies to enable higher levels of automation, intelligence, and

application success. All four problem domains defined are accompanied by one possible

approach based on authors' knowledge and perspective. It is hoped that this will further

advance intelligent system research and development for aerospace applications.

There are definitely several other problem domains where intelligent system technologies

could help but need major advances to achieve high levels of success. Some of these

areas include data-driwn inverse design and modeling, autonomous planning and

scheduling, and bio-insp red aerial vehicles.

8 References

1. K. KrJsbnaKumar, Immunized Neurocontrol: Concepts and Initial Results, Presented

at the workshop on combinations of genetic algorithms and neural networks,

COGANN'92, Baltimore, MD, June, i-99-2_...................................

2. K. KrishnaKumar anal J. C. Neidhoefer, Immunized Artificial Systems--Concepts and

Applications, in Genetic Algorithms in Computers and Engineering, John Wiley &

Sons, 1997.

3. K. KrishnaKumar ard J. C. Neidhoefer, Immunized Neuro-control, Expert Systems

with Applications, 1':)97.

4. J. Kaneshige and K. Gundy-Burlet, Integrated Neural Flight and Propulsion Control

System, AIAA-2001.4 3 86, August 2001.

5. R. T. Rysdyk and Anthony J. Calise, Fault Tolerant Flight Control via Adaptive

Neural Network Aug_nentation, AIAA 98-4483, August 1998.

14



6. K. Krishnakumar,N. Kulkami, "InverseAdaptiveNeuro-Controlfor thecontrol of a
turbofan engine", Proceedingsof AIAA conferenceon Guidance,Navigation and
Control,Portland,OR, 1999.

7. T. L. Chen, A. R. Pritchett, On-The-Fly ProcedureDevelopment for Flight Re-
PlanningFollowing SystemFailures,AIAA 2000-0300,January2000.

8. A. Satyadas,Cognitive Prediction and Control using Soft Computing, Technical

Report, University of Alabama, USA, 1998.

9. K. KrishnaKumar, Levels of Intelligent Control, AIAA Tutorial at New Orleans, LA,

August 1997.

10. G. C. Reinsel, Element of multivariate time series analysis, Springer-Verlag, New

York, 1986.

11. A. S. Weigend, N. A. Gershenfeld (editors), Time Series Prediction, Addison-Wesley

Publishing Co., New York, 1994.

12. D. G. Bails, L. C. Peppers, Business fluctuations: forecasting techniques and

applications, Prentice-hall, Inc., New Jersey, 1982.

13. U. Harigopal, A. Satyadas, Cognizant Enterprise Maturity Model, co-guest editors: A.

Satyadas, U. Harigopal, N. Cassaigne, IEEE Transactions on Systems Man and

Cybernetics Part C: Applications and Reviews: Special Issue on Knowledge

Management, Vol. 31, No. 4, pp 449-459, November 2001.

14. J. Hamilton, Time Series Analysis, Princeton University Press, Princeton, NJ, USA,
1994.

15. P. Werbos, A Brain-like Design to Learn Optimal Strategies in Complex

Environments, in Brain-Like Computing and Intelligent Information Systems,

Springer-Verlag Singapore Pte. Ltd. 1998

16. A. Barto, Reinforcement Learning and Adaptive Critic Methods. Handbook of

Intelligent Control: Neural, Fuzzy, and Adaptive Approaches. Van Nosttrand

Reinhold, Kentucky, 1992.

17. I. Bertsekas, J. Tsitsiklis, Neuro-Dynamic Programming, Athena Scientific, Belmont,

Massachusetts, 1996.

18. P. Werbos, Approximate Dynamic Programming For Real-Time Control and Neural

Modeling, Handbook of Intelligent Control: Neural, Fuzzy, and Adaptive

Approaches. Van No:_ttrand Reinhold, Kentucky, USA, 1993.

19. R. Howard. Dynamic Programming and Markov Process, Cambridge, MA, MIT

Press, 1960.

20. K. Krishnakumar, Optimization of the Neural Net Connectivity Pattern Using a Back-

Propagation Algorithm. J0tma_ of Neurocomputing, (5)-p_ 273_286, 1993.

15


